Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cell Rep Med ; 2(7): 100355, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-2283611

ABSTRACT

The emergence of SARS-CoV-2 variants with evidence of antibody escape highlight the importance of addressing whether the total CD4+ and CD8+ T cell recognition is also affected. Here, we compare SARS-CoV-2-specific CD4+ and CD8+ T cells against the B.1.1.7, B.1.351, P.1, and CAL.20C lineages in COVID-19 convalescents and in recipients of the Moderna (mRNA-1273) or Pfizer/BioNTech (BNT162b2) COVID-19 vaccines. The total reactivity against SARS-CoV-2 variants is similar in terms of magnitude and frequency of response, with decreases in the 10%-22% range observed in some assay/VOC combinations. A total of 7% and 3% of previously identified CD4+ and CD8+ T cell epitopes, respectively, are affected by mutations in the various VOCs. Thus, the SARS-CoV-2 variants analyzed here do not significantly disrupt the total SARS-CoV-2 T cell reactivity; however, the decreases observed highlight the importance for active monitoring of T cell reactivity in the context of SARS-CoV-2 evolution.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Young Adult
2.
Cell Host Microbe ; 30(3): 388-399.e3, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1670319

ABSTRACT

Both SARS-CoV-2 infections and COVID-19 vaccines elicit memory T cell responses. Here, we report the development of 2 pools of experimentally defined SARS-CoV-2 T cell epitopes that, in combination with spike, were used to discriminate 4 groups of subjects with different SARS-CoV-2 infection and COVID-19 vaccine status. The overall T cell-based classification accuracy was 89.2% and 88.5% in the experimental and validation cohorts. This scheme was applicable to different mRNA vaccines and different lengths of time post infection/post vaccination and yielded increased accuracy when compared to serological readouts. T cell responses from breakthrough infections were also studied and effectively segregated from vaccine responses, with a combined performance of 86.6% across all 239 subjects from the 5 groups. We anticipate that a T cell-based immunodiagnostic scheme to classify subjects based on their vaccination and natural infection history will be an important tool for longitudinal monitoring of vaccinations and for establishing SARS-CoV-2 correlates of protection.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , COVID-19/diagnosis , Epitopes, T-Lymphocyte , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
3.
Science ; 370(6512): 89-94, 2020 10 02.
Article in English | MEDLINE | ID: covidwho-695026

ABSTRACT

Many unknowns exist about human immune responses to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. SARS-CoV-2-reactive CD4+ T cells have been reported in unexposed individuals, suggesting preexisting cross-reactive T cell memory in 20 to 50% of people. However, the source of those T cells has been speculative. Using human blood samples derived before the SARS-CoV-2 virus was discovered in 2019, we mapped 142 T cell epitopes across the SARS-CoV-2 genome to facilitate precise interrogation of the SARS-CoV-2-specific CD4+ T cell repertoire. We demonstrate a range of preexisting memory CD4+ T cells that are cross-reactive with comparable affinity to SARS-CoV-2 and the common cold coronaviruses human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1. Thus, variegated T cell memory to coronaviruses that cause the common cold may underlie at least some of the extensive heterogeneity observed in coronavirus disease 2019 (COVID-19) disease.


Subject(s)
Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Epitopes, T-Lymphocyte/immunology , Immunologic Memory , Pneumonia, Viral/immunology , Betacoronavirus/genetics , Blood Donors , COVID-19 , Cross Reactions , Epitope Mapping , Epitopes, T-Lymphocyte/genetics , Genome, Viral , Humans , Open Reading Frames , Pandemics , SARS-CoV-2 , Sequence Homology
4.
Cell ; 181(7): 1489-1501.e15, 2020 06 25.
Article in English | MEDLINE | ID: covidwho-260045

ABSTRACT

Understanding adaptive immunity to SARS-CoV-2 is important for vaccine development, interpreting coronavirus disease 2019 (COVID-19) pathogenesis, and calibration of pandemic control measures. Using HLA class I and II predicted peptide "megapools," circulating SARS-CoV-2-specific CD8+ and CD4+ T cells were identified in ∼70% and 100% of COVID-19 convalescent patients, respectively. CD4+ T cell responses to spike, the main target of most vaccine efforts, were robust and correlated with the magnitude of the anti-SARS-CoV-2 IgG and IgA titers. The M, spike, and N proteins each accounted for 11%-27% of the total CD4+ response, with additional responses commonly targeting nsp3, nsp4, ORF3a, and ORF8, among others. For CD8+ T cells, spike and M were recognized, with at least eight SARS-CoV-2 ORFs targeted. Importantly, we detected SARS-CoV-2-reactive CD4+ T cells in ∼40%-60% of unexposed individuals, suggesting cross-reactive T cell recognition between circulating "common cold" coronaviruses and SARS-CoV-2.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/immunology , Epitopes, T-Lymphocyte , Pneumonia, Viral/immunology , Betacoronavirus/genetics , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 , COVID-19 Vaccines , Convalescence , Coronavirus Infections/blood , Coronavirus Infections/metabolism , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cross Reactions , Humans , Leukocytes, Mononuclear/immunology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Viral Proteins/metabolism , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL